Dual Lower Bounds for Approximate Degree and Markov-Bernstein Inequalities
نویسندگان
چکیده
The ε-approximate degree of a Boolean function f : {−1, 1} → {−1, 1} is the minimum degree of a real polynomial that approximates f to within ε in the `∞ norm. We prove several lower bounds on this important complexity measure by explicitly constructing solutions to the dual of an appropriate linear program. Our first result resolves the ε-approximate degree of the two-level AND-OR tree for any constant ε > 0. We show that this quantity is Θ( √ n), closing a line of incrementally larger lower bounds [3, 12, 25, 36, 38]. The same lower bound was recently obtained independently by Sherstov using related techniques [31]. Our second result gives an explicit dual polynomial that witnesses a tight lower bound for the approximate degree of any symmetric Boolean function, addressing a question of Špalek [40]. Our final contribution is to reprove several Markov-type inequalities from approximation theory by constructing explicit dual solutions to natural linear programs. These inequalities underly the proofs of many of the best-known approximate degree lower bounds, and have important uses throughout theoretical computer science.
منابع مشابه
APPROXIMATE SOLUTIONS OF THE WALRASIAN AND GORMAN POLAR FORM EQUILIBRIUM INEQUALITIES By
Recently Cherchye et al. (2011) reformulated the Walrasian equilibrium inequalities, introduced by Brown and Matzkin (1996), as an integer programming problem and proved that solving the Walrasian equilibrium inequalities is NP-hard. Following Brown and Shannon (2000), we reformulate the Walrasian equilibrium inequalities as the dual Walrasian equilibrium inequalities. Brown and Shannon proved ...
متن کاملBasic Polynomial Inequalities on Intervals and Circular Arcs
We prove the right Lax-type inequality on subarcs of the unit circle of the complex plane for complex algebraic polynomials of degree n having no zeros in the open unit disk. This is done by establishing the right Bernstein-Szegő-Videnskii type inequality for real trigonometric polynomials of degree at most n on intervals shorter than the period. The paper is closely related to recent work by B...
متن کاملOn Bernstein Type Inequalities for Complex Polynomial
In this paper, we establish some Bernstein type inequalities for the complex polynomial. Our results constitute generalizations and refinements of some well-known polynomial inequalities.
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملAPPROXIMATE SOLUTIONS OF THE WALRASIAN EQUILIBRIUM INEQUALITIES WITH BOUNDED MARGINAL UTILITIES OF INCOME By
Recently Cherchye et al. (2011) reformulated the Walrasian equilibrium inequalities, introduced by Brown and Matzkin (1996), as an integer programming problem and proved that solving the Walrasian equilibrium inequalities is NPhard. Brown and Shannon (2002) derived an equivalent system of equilibrium inequalities ,i.e., the dual Walrasian equilibrium inequalities. That is, the Walrasian equilib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Comput.
دوره 243 شماره
صفحات -
تاریخ انتشار 2013